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EXECUTIVE SUMMARY

This report is a summary of the work that has been performed on the implementation of global
fracture parameters into a finite element (FE) post-processing computer code. The work is a
continuation of a previous study involving the implementation of a micromechanical fracture
model into the LS-DYNA user-defined subroutines.

Two fracture parameters were identified and implemented into the post-processor: the strain
energy release rate, J , and the Weibull stress, w . The calculation of these parameters
involved parsing the output data of the selected FE code, LS-DYNA, including element
stresses, strain energies, and nodal coordinates and kinematic variables for an arbitrary number
of dump times in a specified geometric window. The calculation of J involves the automatic
determination of J-integral contours, which was coded into the post-processor.

The calculation routines were validated using a linear elastic problem for the J - integral
calculator, and Beremin’s [2] data for the Weibull stresses. The calculated results were in
good agreement with published values. Future work includes the continuing testing and
improvement of the post-processor.
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1.0 INTRODUCTION

This report is a continuation of previous work in which a constitutive model for steel was
developed that addressed material failure in both the brittle and ductile regimes [1]. For
ductile (high temperature) regions, where void nucleation and coalescence governs failure, the
Johnson-Cook plasticity model was used in conjunction with Gurson void fraction evolution.
For brittle (low temperature) regions, the maximum principal stress was assumed to govern
failure; fracture occurred when the maximum principal stress reached a critical cleavage
fracture value.

Although a critical cleavage fracture stress is simple in concept, it is not widely used as a
practical fracture measure. Investigators have tended to adopt more probabilistic approaches
such as the Beremin [2] and Master Curve [3] methods. In these methods, a scalar fracture
measure for cracked regions is computed or experimentally determined or both for a number of
test specimens. This fracture measure is then ranked and fit to a cumulative distribution curve
to determine the probability of failure at a specified scalar fracture measure.

In this project, it is desired to adopt the probabilistic methodology to compute fracture
initiation. Two measures of interest include the strain energy release rate, J , and Weibull
stress, w . The original tasks were as follows:

1) Task 1: Elastic-Plastic Fracture Mechanics Parameter and Internal Strain Energy
Density – a methodology to compute J for three-dimensional finite element (FE)
meshes will be adopted and implemented as a FE post-processor. This will also
involve calculation of the internal strain energy density, W , in the FE constitutive
model developed in the previous work. The J-integral method will be validated using
classical test problems defined by the Scientific Authority and Martec.

2) Task 2: Size Dependent Cleavage Fracture Modelling – the calculation of w for
specified Weibull parameters will be added to the FE post-processor.

3) Task 3: Application of the Size Dependent DBT Model - the Beremin model will be
used to fit Weibull parameters to the drop tower tests analysed in [1]. The J-integral
method may be used to rank the experiments for the Beremin model.

After the completion of Tasks 1 and 2, the scope of Task 3 was changed slightly because of the
following reasons:

1) It was unclear how to apply the J -integral and Beremin fracture criteria to dynamic
fracture. Both methods are more suitable for determining the onset of brittle fracture in
static analysis.

2) Extensive time and effort had been spent in developing a crack post-processor for LS-
DYNA, and there were not sufficient funds to develop a methodology for dynamic
fracture.
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Task 3 was rewritten to include the testing of the Beremin model using Beremin’s original
data, using specimen failure loads to rank the experiments.

In order to compute these global fracture parameters, a crack post-processor for LS-DYNA has
been written in C++. The post-processor reads the LS-DYNA d3plot file for the desired time
window, then computes either Weibull stresses or J-integrals for specific times.

Section 2 describes the methodology used for the 3-D J-integral calculation along with a
validation calculation. Section 3 contains the Beremin model methodology and testing.
Section 4 summarizes the work, and identifies areas of future study.
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2.0 J INTEGRAL CALCULATION

The calculation of the local mechanical energy release rate, J , follows the procedure outlined
in [4]. The methodology utilizes a domain integral approach, where an average value of J is
computed for the 3-D domain. The calculation is performed using the crack post-processor
described in Appendix B.

2.1 PRELIMINARIES

Figure 2.1 shows the crack domain. The crack coordinate system is oriented with �ܺଶ normal
to the crack plane, ܺଷ tangent to the crack. The direction ܺଵ is the direction of crack
extension. The calculation volume of interest is denoted as V , and is enclosed by areas

51 AA . The crack dimension is denoted as s ; V extends from point a to point c ( as to cs ).
An average value of J is computed at point b .

Figure 2.1: J Integral Domain Volume and Crack Reference Frame (from [4])

In the calculation, the following is assumed:

1) Body forces are neglected (other than inertial forces).
2) Thermal strains are neglected.
3) High speed crack propagation is not included.
4) Tensor notation is used.
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The domain integral approach utilizes the virtual crack extension principle [4]. In this method,
the contributing terms to the mechanical release rate over the domain from a to c , caJ , are
multiplied by an arbitrary weighting function, q , as shown in Figure 2.2.

Figure 2.2: Weighting function, q (from [4])

The average value at b , J , is then calculated by using the mean value theorem.

a

c

s

s

ca

dssq

JJ [2.1]

Utilizing assumptions 1-4, caJ , can be expressed as

c

a

s

s V
iiiiijijca dVquuquuWquPqdssqsJJ

0

01,1,1,1,, 2
1 [2.2]

where

P = 1st Piola-Kirchoff stress tensor
uuu ,, = displacement, velocity, and acceleration, respectively

= material density
W = strain energy density
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and the commas in the subscripts imply differentiation. Since the 1st Piola-Kirchoff stresses
are used here, the differentiation is with respect to the original coordinates, X , rather than the
current coordinates, x . The strain energy density, W , is computed as

ijijdW [2.3]

where and are the true stress and true strain, respectively.

2.2 FINITE ELEMENT FORMULATION

If the domain is discretized into a number of finite elements, en , Equation 2.2 becomes

en

i V
i

i

T
jca dVquuquuWquPqJ

1
01,1,1,1,,

0
2
1 [2.4]

LS-DYNA uses one-point integration for their hexahedral elements. Using this integration
rule in conjunction with the standard isoparametric formulation, Equation 2.4 is now written as

en

i i

T
jca quuquuWquPqJJ

1 0
1,1,1,1,,0 2

12 [2.5]

where J is the element Jacobian matrix. The element coordinates, kinematic variables and
weighting function are expressed in terms of trilinear shape functions, N

ii XtsrNX ),,( [2.6]

ii xNx [2.7]

ii

ii

ii

uNu

uNu

uNu

[2.8]

qNq [2.9]

where tsr ,, are isoparametric coordinates, and the overbar denotes nodal quantities.
Appendix A contains the hexahedral element shape functions.

2.3 ELEMENT JACOBIAN

The element Jacobian is evaluated using
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t
X

t
X

t
X

s
X

s
X

s
X

r
X

r
X

r
X

J

321

321

321

[2.10]

Substituting Equation 2.6 into 2.10 yields

321

321

321

X
t
N

X
t
N

X
t
N

X
s
N

X
s
N

X
s
N

X
r
N

X
r
N

X
r
N

J [2.11]

2.4 SPATIAL DERIVATIVES

Spatial derivatives are computed using Equation 2.12

t

s

r
J

X

X

X
1

3

2

1

[2.12]

For the weighting function, q , Equation 2.12 yields

q
t
N

q
s
N

q
r
N

J

X
q
X
q
X
q

1

3

2

1

[2.13]

Displacement gradients are computed similarly to Equation 2.13. The shape function
derivatives are contained in Appendix A.



Modelling of Specimen Fracture – Final Report 7

TR-13-47

2.5 1ST PIOLA-KIRCHOFF STRESS TENSOR

The 1st Piola-Kirchoff stress tensor is written as

TFFP [2.14]

where

F = deformation gradient tensor
= Cauchy stress tensor

Taking the transpose of both sides of Equation 2.14, and noting that the Cauchy stress tensor is
symmetric

1FFP T [2.15]

Equation 2.15 is used in Equation 2.5.

2.6 DEFORMATION GRADIENT TENSOR

The deformation gradient tensor is written as

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

X
x

X
x

X
x

X
x

X
x

X
x

X
x

X
x

X
x

F [2.16]

Substituting the transpose of Equation 2.13 into Equation 2.16

T

T

T

Jx
t
N

x
s
N

x
r
N

Jx
t
N

x
s
N

x
r
N

Jx
t
N

x
s
N

x
r
N

F

333

222

111

[2.17]
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2.7 FINITE ELEMENT DOMAIN FOR J-INTEGRAL CALCULATION

2.7.1 Determination of Crack Coordinate System

Figure 2.3 shows the crack edge of interest, defined by three nodes. The normal in the 2X
direction, 2n , is previously defined. The normal parallel to the crack, 3n , is taken as the
direction of the normalized component of the vector between node 1 and node 2, v ,
perpendicular to 2n

vvnv
vvnvn

2

2
3

[2.18]

The direction of crack propagation, 1n , is then taken as the cross product between 2n and 3n

321 nnn [2.19]

Figure 2.3: Crack Reference Frame

All tensorial variables must be transformed to the crack reference frame. For vectors such as
coordinates, displacements, velocities and accelerations

gc XTX [2.20]

and for stresses

TT g
T

c [2.21]

Where the subscripts “c” and “g” refer to crack and global reference frames, respectively, and
T is a transformation matrix, given by

3

2

1

n
n
n

T [2.22]

1
1

3

2

v

1n

3n
2n
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2.7.2 Determination of Weighting Function, q

The weighting function, q , can be any arbitrary function within the J-integral domain, and
must be zero on the domain boundary. An easy function commonly adopted by investigators
is to set 0.1q on all nodes in the domain interior, and 0.0q on the domain boundary.

2.8 DETERMINATION OF J-INTEGRAL CONTOURS

Figure 2.4 shows the mesh of a typical crack problem, arranged in a Cartesian fashion. The J-
integral domain is always two elements wide, and is defined by a number of contours as shown
by the red arrowed lines in Figure 2.4. Each contour consists of a number of contiguous
elements that encircle the previous contours, and include all elements contained in the previous
contours.

Given the crack tip nodes, the J-integral contours are determined automatically by finding
nodal pairs that are contained in the adjacent elements. For contour 1 in Figure 2.4, the crack
tip nodes are used as nodal pairs. For contour 2, the exterior nodes of contour 1 are used as
nodal pairs for adjacency checking, and so on.

For this implementation, only regular Cartesian arrangements and full 8 node hexahedrons are
admitted. Future development will include degenerated elements and multiple crack tip nodes.

2.9 J-INTEGRAL CALCULATION

The calculation method proceeds as follows:

1) The crack tip coordinate system is defined by using Section 2.7.1. Coordinates,
kinematic variables, and stresses are transformed to the crack tip coordinate system.

For each contour:

2) The nodal weighting function, q , is applied to interior and boundary nodes using
Section 2.7.2.

3) The J-integral is evaluated using the expressions from Sections 2.2-2.6.
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Figure 2.4: Crack Tip Mesh and J-Integral Contours

2.10 J-INTEGRAL CALCULATION EXAMPLE

A linear elastic example problem is used for validation; the J-integral is computed using the
crack post-processor described in Appendix B. In this example, a central through-thickness
crack is introduced in a thin steel plate of finite width and loaded statically perpendicular to the
crack. Figure 2.5 shows the crack geometry. The strain energy release rate, J , is computed as

E
KJ

2

[2.23]

where K is the crack tip stress intensity factor, calculated as [7]

aK [2.24]

W
asec [2.25]

Figure 2.6 shows the finite element model used. An elastic modulus and Poisson’s ratio of
200,000 MPa and 0.3 were used, respectively. The plate thickness and height are 5 and 200
mm, respectively. Ten hexahedral elements were used through the thickness, and J was
calculated at the plate center. An end load of 1.0 MPa was applied.

1

2

3
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Figure 2.5: Crack Geometry

Figure 2.6: Finite Element Model

2a

W

Crack tip region

W = 100 mm
a = 20 mm
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Table 2.1 shows the computed J for each of the contours. The average J for contours 2-10
was 3.9601×10-4 MPa-mm, which compares favorably (within 2%) to the theoretical value of
3.8833×10-4 MPa-mm.

Table 2.1: Calculated J Value For Contours

Contour Number J (×10-4 MPa-mm) % Error
1 3.2622 -15.99
2 3.8793 -0.10
3 3.8693 -0.36
4 4.0390 +4.01
5 3.8997 +0.42
6 4.0312 +3.81
7 3.9761 +2.39
8 3.9877 +2.69
9 3.9679 +2.18
10 3.9908 +2.77

Average 2-9 3.9601 +1.98
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3.0 WEIBULL STRESSES AND BEREMIN MODEL CALCULATION

The Beremin model [2] is a methodology that combines finite element analysis with
experimental results in order to estimate a measure of cleavage fracture stress intensity and its
uncertainty. A measure of cleavage fracture initiation (such as displacement at fracture
initiation for Charpy V-notch tests) is first selected. Normally, tests are selected in the brittle
range (low temperature) in order to exclude all ductile effects. The experimental results are
listed in ascending order of the measure, and finite element analyses are performed on each
test. The Weibull stress is then computed and fit to a probability distribution curve.

The Weibull stresses are computed using the crack post-processor described in Appendix B.

3.1 PROBABILITY DISTRIBUTION CURVE

The failure probability of any given test can be obtained using a two parameter probability
distribution

m

u

w
fP exp1 [3.1]

where

fP = failure probability

w = Weibull stress

u = scaling stress, curve fit parameter 1
m = Weibull exponent, curve fit parameter 2

The Weibull stress is computed using a summation over all the elements in the crack plastic
zone, pn

m
n

i

m

ii
w

p

V
V

/1

1 0
1 [3.2]

where

1 = maximum principal stress

iV = element volume

0V = reference volume, can be taken as 1
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3.2 PROBABILITY FUNCTION CURVE FIT

The curve fit for Equation 3.1 is not straightforward, because the Weibull stress summation
depends on the m parameter. Usually, m is assumed, and the scaling parameter, u , is
calculated. Equation 3.1 can be rearranged to form

uw
fPm

lnln
1

1lnln1 [3.3]

or

bxy [3.4]

where

fPm
y

1
1lnln1 [3.5]

wy ln [3.6]

ub ln [3.7]

3.3 CURVE FITTING PROCEDURE

Initially, test data is ranked according to a monotonically increasing load parameter that is a
direct measure of cleavage fracture initiation. Examples of load parameters that are commonly
used are: load, extension, and displacement at fracture initiation. Test data is ranked in
ascending order of the load parameter. The curve fitting method then proceeds as follows:

1) From the N specimens, a failure probability is assigned to each specimen, j , as

Nj
N

jP ,1,5.0 [3.9]

2) A finite element analysis is performed for each test, and the Weibull stress, w , is
computed using Equation 3.2, with a guessed value of m .

3) The parameter u is determined from the x-intercept of curve fitting Equation 3.4.
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3.4 CURVE FITTING EXAMPLE – BEREMIN DATA

To illustrate the procedure, a curve fit of part of Beremin’s [2] data is shown here. A multiple
set of two uniaxial specimens were loaded to failure at low temperature (77 K). To check the
methodology and the postprocessor, a set of finite element analyses of two specimens,
designated AE0.2 Type 2 and AE0.2 Type 3, are processed to obtain the Weibull stresses and
curve fits. Figure 3.1 shows the specimen dimensions, and Figure 3.2 the FE models for the
Type 2 and 3 geometry. One-quarter symmetry was used for the FE models.

Figure 3.1: Specimen Dimensions for AE0.2 Specimens (obtained from [2])

Figure 3.2: Specimen FE Models
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Material properties were obtained from Figure 3.3, which shows the temperature dependence
of the yield and flow stress. A bilinear stress-strain law was assumed for the FE analyses. The
hardening modulus was taken as the difference in flow stress at 10% strain ߝ) in Figure 3.3)
and the yield stress divided by the strain difference. The data shown in Figure 3.3 is for a
different heat of material than the one required; Heat A is required, and Heat B is shown. As a
result, the data at 77° K is scaled by the yield strength difference between the two heats (a
reduction factor of 0.942). The *MAT_PLASTIC_KINEMATIC material model was used;
Table 3.1 shows the material properties used.

Figure 3.3: Yield and Flow Stress Dependence on Temperature (from [2])
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Table 3.1: Material Properties For Beremin FE Analysis

Elastic Modulus (MPa) 200,000
Poisson’s Ratio 0.3
Yield Stress (MPa) 891.6
Hardening Modulus (MPa) 1449.0

Each FE model is loaded to the failure loads observed in the experiments. At these failure
loads, the fracture post-processor is used to compute the Weibull stress assuming an ݉
exponent of 22.0. Table 3.2 shows the sorted Weibull stresses computed from the FE
analyses. The probability of failure is computed using Equation 3.9.

Table 3.2: Weibull Stresses – Sorted List

Test Number Type Weibull Stress Pf
1 3 1659.6 0.02174
2 3 1718.0 0.06522
3 3 1736.1 0.10870
4 3 1767.7 0.15217
5 3 1979.2 0.19565
6 2 2221.0 0.23913
7 2 2271.5 0.28261
8 2 2392.9 0.32609
9 2 2392.9 0.36957
10 2 2445.7 0.41304
11 2 2478.5 0.45652
12 3 2478.5 0.50000
13 2 2480.9 0.54348
14 2 2521.3 0.58696
15 2 2530.2 0.63043
16 3 2538.8 0.67391
17 2 2539.6 0.71739
18 2 2570.6 0.76087
19 3 2652.4 0.80435
20 3 2667.8 0.84783
21 3 2727.7 0.89130
22 3 2736.9 0.93478
23 3 2745.3 0.97826

Figure 3.4 shows the cumulative plot, along with the curve fit from Equation 3.3. The scaling
parameter, ,௨ߪ was determined as 2517.7 MPa. It is evident that the curve fit is less than
optimal. There could be several reasons for this:

1) Selection of ݉ – a lower value would rotate the central portion of the curve counter-
clockwise and fit the data better at the lower tail. This can be seen by investigation of
Beremin’s original data in Figure 3.5, which shows essentially the same behavior.
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2) Finite element model – in the crack region, it was found that relatively few elements
resided in the plastic zone at the lower failure loads. A more refined mesh may give
more consistent results, since the number of plastic elements would increase. It is
difficult to tell what refinement Beremin used, since the mesh data is not available. As
well, the material properties used in the Beremin analyses were not explicitly specified.
These were estimated based on the available material data.

Figure 3.4: Cumulative Failure Probability

Nevertheless, the curve fit with ݉ = 22 yielded a ௨ߪ of 2518 MPa, which compared favorably
with the Beremin computed value of 2570 MPa. This indicates that the Weibull stresses
computed using the post-processor are correct values.
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Figure 3.5: Beremin’s Original Data
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4.0 SUMMARY AND CONCLUSIONS

A post-processor has been written in C++ code to compute J-integrals and Weibull stresses for
LS-DYNA 3-dimensional hexahedral elements. The post-processor reads LS-DYNA binary
files (d3plot) and computes J and w for an arbitrary number of contours and solution dump
times. For this version, the crack tip is assumed to consist of one nodal point line, and the
elements are 8-noded hexahedrons. The computational modules have been validated on
selected test problems.

Although great progress has been made on the development of an FE global fracture post-
processor, it remains to improve and test the software for larger dynamic problems. The
following future work is recommended.

1) Multiple LS-DYNA files – for large problems, more than one d3plot file is generated.
The current software does not support this.

2) Non-hexahedral elements – incorporation of wedges, tetrahedrons, etc.

3) Tests on nonlinear and dynamic problems – in particular, the J-integral calculation.
This can be performed on the large amount of data collected by DRDC Atlantic for
350WT steel.
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APPENDIX A: ELEMENT SHAPE FUNCTIONS AND DERIVATIVES

Hexahedral element shape functions can be expressed as

8,1,111
8
1 ittssrrN iiii [A.1]

Where tsr ,, are isoparametric coordinates that extend from -1 to +1, and i is the node
number. Figure A.1 shows the isoparametric coordinate and node numbering convention
utilized by LS-DYNA. Table A.1 shows the values used for iti tsr ,, according to node
number.

Figure A.1: Isoparametric Coordinate System

i ir is it
1 -1 -1 -1
2 +1 -1 -1
3 +1 +1 -1
4 -1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 +1 +1 +1
8 -1 +1 +1

The shape function derivatives are written as
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APPENDIX B: LS-DYNA CRACK POST-PROCESSOR

This appendix is a description of the crack post-processor (hereafter referred to as CPP).
CPP’s function is to parse LS-DYNA d3plot files, and calculate either Weibull stresses or J-
integrals for a selected time window. The program requires an input file and LS-DYNA
d3plot file, and outputs J-integral values and Weibull stresses. The input file is in keyword
format similar to that used by LS-DYNA, with an asterisk (*) preceding any keyword. The
keywords can be in any order, and the input file may be commented with the first character
being an exclamation point (!). The input is free format.

B.1: KEYWORD DESCRIPTION

*CALC

Specify the solution type

Variable Variable Type Comments

calc_type Integer Calculation type
= 0 J-integral
= 1 Weibull stresses

*CRACK

Define the crack orientation

Variable Variable Type Comments

n_crack_nodes Integer Number of crack nodes
(3 for now)

crack_node[i] Integer Crack node numbers
i = 1,3

n2[i] Real Orientation of crack n2 normal
i = 1,3 in Figure 2.1

*J_CONTOURS

Specify the number of contours for J calculations and properties

Variable Variable Type Comments

contour_type Integer Contour type – not presently used
n_contours Integer Number of contours
part_num Integer LS-DYNA part number – not used



*TIMES

Specify the time range for computation. CPP will perform calculations for d3plot results
within this time window

Variable Variable Type Comments

start_time Real Start time
end_time Real End time

*RHO

Specify the material density

Variable Variable Type Comments

rho Real Material density

*MAT

Specify the material type. For a material type of zero (elastic), CPP will compute the elastic
strain energy density for use in J-integral calculations. For anything else, CPP will read in the
strain energy density from the d3plot file

Variable Variable Type Comments

mat_type Integer Material type
= 0 Linear elastic

*DYNAMICS

Specify the dynamics type. If zero (static), velocities and accelerations will not be included in
the J-integral calculations

Variable Variable Type Comments

dyn_type Integer Dynamics type
= 0 Static
= 1 Dynamic

*WEIBULL_WINDOW

Specify the geometric window that Weibull stresses will be computed over. CPP will only
include elements whose centers lie within the window



Variable Variable Type Comments

x_min[i] Real Window minimum coordinates
i = 1,3

x_max[i] Real Window maximum coordinates
i = 1,3

*WEIBULL_WINDOW

Specify the parameters for Weibull stress calculation.

Variable Variable Type Comments

n_Weibull Integer Number of Weibull exponents

m_exp[i] Real Weibull exponents, m
i = 1, n_Weibull

V0 Real Scaling volume

B.2: INPUT FILE COMPOSITION

Table B.1 shows the applicability of all keywords to the J-integral and Weibull stress
computations. Any keyword marked with a checkmark must be included in the selected
computation type.

Table B.1: Keyword Applicability to Selected Analysis Type
Keyword J Integral Weibull Stress
*CALC

*CRACK
*J_CONTOURS

*TIMES
*RHO
*MAT

*DYNAMICS
*WEIBULL_WINDOW
*WEIBULL_PARAMS


